Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 570
Filter
1.
Sci Rep ; 14(1): 10420, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710730

ABSTRACT

In the mouse embryo, the transition from the preimplantation to the postimplantation epiblast is governed by changes in the gene regulatory network (GRN) that lead to transcriptional, epigenetic, and functional changes. This transition can be faithfully recapitulated in vitro by the differentiation of mouse embryonic stem cells (mESCs) to epiblast-like cells (EpiLCs), that reside in naïve and formative states of pluripotency, respectively. However, the GRN that drives this conversion is not fully elucidated. Here we demonstrate that the transcription factor OCT6 is a key driver of this process. Firstly, we show that Oct6 is not expressed in mESCs but is rapidly induced as cells exit the naïve pluripotent state. By deleting Oct6 in mESCs, we find that knockout cells fail to acquire the typical morphological changes associated with the formative state when induced to differentiate. Additionally, the key naïve pluripotency TFs Nanog, Klf2, Nr5a2, Prdm14, and Esrrb were expressed at higher levels than in wild-type cells, indicating an incomplete dismantling of the naïve pluripotency GRN. Conversely, premature expression of Oct6 in naïve cells triggered a rapid morphological transformation mirroring differentiation, that was accompanied by the upregulation of the endogenous Oct6 as well as the formative genes Sox3, Zic2/3, Foxp1, Dnmt3A and FGF5. Strikingly, we found that OCT6 represses Nanog in a bistable manner and that this regulation is at the transcriptional level. Moreover, our findings also reveal that Oct6 is repressed by NANOG. Collectively, our results establish OCT6 as a key TF in the dissolution of the naïve pluripotent state and support a model where Oct6 and Nanog form a double negative feedback loop which could act as an important toggle mediating the transition to the formative state.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , Mouse Embryonic Stem Cells , Nanog Homeobox Protein , Animals , Mice , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Differentiation/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Germ Layers/metabolism , Germ Layers/cytology , Mice, Knockout
2.
Cell Stem Cell ; 31(5): 640-656.e8, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701758

ABSTRACT

Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 µm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.


Subject(s)
Actins , Germ Layers , Osmotic Pressure , Polymerization , Humans , Actins/metabolism , Germ Layers/metabolism , Germ Layers/cytology , Models, Biological , Tight Junctions/metabolism
3.
Cell Stem Cell ; 31(5): 587-588, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701753

ABSTRACT

Using a human stem cell-based model to understand how the human epiblast forms at the very beginning of implantation, Indana et al.1 establish a role for pushing forces that are generated by apical actin polymerization and reveal a two-stage, biomechanics-driven lumen growth process underlying epiblast cavity morphogenesis.


Subject(s)
Actins , Humans , Actins/metabolism , Germ Layers/metabolism , Germ Layers/cytology , Morphogenesis , Animals
4.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38563517

ABSTRACT

The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.


Subject(s)
Blastocyst , Cell Differentiation , Cell Lineage , Models, Biological , Animals , Mice , Blastocyst/metabolism , Blastocyst/cytology , Signal Transduction , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Endoderm/cytology , Endoderm/metabolism , Germ Layers/cytology , Germ Layers/metabolism
5.
Results Probl Cell Differ ; 72: 11-25, 2024.
Article in English | MEDLINE | ID: mdl-38509250

ABSTRACT

Pluripotent stem cell lines established from early-stage embryos of mammals or other species represent the embryonic stages before the initiation of somatic development. In these stem cell lines, cell proliferation capacity is maintained while developmental progression is arrested at a specific developmental stage that is determined by the combination of culture conditions, cell state, and species. All of these pluripotent stem cell lines express the transcription factors (TFs) Sox2 and Pou5f1 (Oct3/4); hence, these TFs are often regarded as pluripotency factors. However, the regulatory roles of these TFs vary depending on the cell line type. The cell lines representing preimplantation stage embryonic cells (mouse embryonic stem cells, mESCs) are regulated principally by the combined action of Sox2 and Pou5f1. Human ESCs and mouse epiblast stem cells (EpiSCs) represent immature and mature epiblast cells, respectively, where Otx2 and Zic2 progressively take over the preimplantation stage's regulatory roles of Sox2 and Pou5f1. This transition of the core TFs occurs to prepare for the initiation of somatic development.


Subject(s)
Pluripotent Stem Cells , Animals , Mice , Humans , Transcription Factors/metabolism , Germ Layers/metabolism , Cell Line , Cell Differentiation , Mammals
6.
Article in English | MEDLINE | ID: mdl-38509249

ABSTRACT

All somatic cells develop from the epiblast, which occupies the upper layer of two-layered embryos and in most mammals is formed after the implantation stage but before gastrulation initiates. Once the epiblast is established, the epiblast cells begin to develop into various somatic cells via large-scale cell reorganization, namely, gastrulation. Different pluripotent stem cell lines representing distinct stages of embryogenesis have been established: mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs), and mouse epiblast stem cells (EpiSCs), which represent the preimplantation stage inner cell mass, an early  post-implantation stage epiblast, and a later-stage epiblast, respectively. Together, these cell lines provide excellent in vitro models of cell regulation before somatic cells develop. This chapter addresses these early developmental stages.


Subject(s)
Embryonic Stem Cells , Pluripotent Stem Cells , Animals , Mice , Humans , Embryonic Stem Cells/metabolism , Cell Differentiation , Pluripotent Stem Cells/metabolism , Germ Layers/metabolism , Cell Line , Mammals
7.
Results Probl Cell Differ ; 72: 61-80, 2024.
Article in English | MEDLINE | ID: mdl-38509252

ABSTRACT

Studies using early-stage avian embryos have substantially impacted developmental biology, through the availability of simple culture methods and easiness in tissue manipulation. However, the regulations underlying brain and head development, a central issue of developmental biology, have not been investigated systematically. Yoshihi et al. (2022a) devised a technique to randomly label the epiblast cells with a green fluorescent protein before their development into the brain tissue. This technique was combined with grafting a node or node-derived anterior mesendoderm labeled with a cherry-colored fluorescent protein. Then cellular events were live-recorded over 18 hours during the brain and head development. The live imaging-based analyses identified previously undescribed mechanisms central to brain development: all anterior epiblast cells have a potential to develop into the brain tissues and their gathering onto a proximal anterior mesendoderm forms a brain primordium whereas the remaining cells develop into the covering head ectoderm. The analyses also ruled out the direct participation of the node's activity in the brain development. Yoshihi et al. (2022a) also demonstrate how the enigmatic data from classical models can be reinterpreted in the new model.This chapter was adapted from Yoshihi K, Iida H, Teramoto M, Ishii Y, Kato K, Kondoh H. (2022b). Epiblast cells gather onto the anterior mesendoderm and initiate brain development without the direct involvement of the node in avian embryos: Insights from broad-field live imaging. Front Cell Dev Biol. 10:1019845. doi: 10.3389/fcell.2022.1019845.


Subject(s)
Gastrula , Germ Layers , Germ Layers/metabolism , Ectoderm/metabolism , Embryonic Development , Brain
8.
Stem Cell Res ; 76: 103358, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447455

ABSTRACT

Parkinson's disease is a degenerative brain disorder characterized by dopamine neuronal degeneration and dopamine transporter loss. In this study, we generated an induced pluripotent stem cell (iPSC) line, KNIHi001-A, from the peripheral blood mononuclear cells (PBMCs) of a 76-year-old man with Parkinson's disease. The non-integrating Sendai virus was used to reprogram iPSCs. iPSCs exhibit pluripotent markers, a normal karyotype, viral clearance, and the ability to differentiate into the three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Male , Humans , Aged , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/metabolism , Leukocytes, Mononuclear/metabolism , Germ Layers/metabolism , Sendai virus/genetics , Cellular Reprogramming , Cell Differentiation/physiology
9.
Cells ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38534378

ABSTRACT

Pluripotent stem cells can be differentiated into all three germ-layers including ecto-, endo-, and mesoderm in vitro. However, the early identification and rapid characterization of each germ-layer in response to chemical and physical induction of differentiation is limited. This is a long-standing issue for rapid and high-throughput screening to determine lineage specification efficiency. Here, we present deep learning (DL) methodologies for predicting and classifying early mesoderm cells differentiated from embryoid bodies (EBs) based on cellular and nuclear morphologies. Using a transgenic murine embryonic stem cell (mESC) line, namely OGTR1, we validated the upregulation of mesodermal genes (Brachyury (T): DsRed) in cells derived from EBs for the deep learning model training. Cells were classified into mesodermal and non-mesodermal (representing endo- and ectoderm) classes using a convolutional neural network (CNN) model called InceptionV3 which achieved a very high classification accuracy of 97% for phase images and 90% for nuclei images. In addition, we also performed image segmentation using an Attention U-Net CNN and obtained a mean intersection over union of 61% and 69% for phase-contrast and nuclear images, respectively. This work highlights the potential of integrating cell culture, imaging technologies, and deep learning methodologies in identifying lineage specification, thus contributing to the advancements in regenerative medicine. Collectively, our trained deep learning models can predict the mesoderm cells with high accuracy based on cellular and nuclear morphologies.


Subject(s)
Deep Learning , Pluripotent Stem Cells , Animals , Mice , Cell Differentiation/physiology , Germ Layers/metabolism , Mesoderm/metabolism
10.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473927

ABSTRACT

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial "naïve" and final "primed" states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway.


Subject(s)
MicroRNAs , Pluripotent Stem Cells , Animals , Mice , Female , Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Signal Transduction , MAP Kinase Signaling System , MicroRNAs/metabolism , Germ Layers/metabolism , MAP Kinase Kinase 6
11.
Dev Cell ; 59(4): 465-481.e6, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38237590

ABSTRACT

The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.


Subject(s)
Epigenesis, Genetic , Pluripotent Stem Cells , Animals , Mice , DNA Methylation/genetics , Chromatin/metabolism , DNA/metabolism , Cell Differentiation/genetics , Germ Layers/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
12.
Nat Struct Mol Biol ; 31(1): 102-114, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177678

ABSTRACT

As embryonic stem cells (ESCs) transition from naive to primed pluripotency during early mammalian development, they acquire high DNA methylation levels. During this transition, the germline is specified and undergoes genome-wide DNA demethylation, while emergence of the three somatic germ layers is preceded by acquisition of somatic DNA methylation levels in the primed epiblast. DNA methylation is essential for embryogenesis, but the point at which it becomes critical during differentiation and whether all lineages equally depend on it is unclear. Here, using culture modeling of cellular transitions, we found that DNA methylation-free mouse ESCs with triple DNA methyltransferase knockout (TKO) progressed through the continuum of pluripotency states but demonstrated skewed differentiation abilities toward neural versus other somatic lineages. More saliently, TKO ESCs were fully competent for establishing primordial germ cell-like cells, even showing temporally extended and self-sustained capacity for the germline fate. By mapping chromatin states, we found that neural and germline lineages are linked by a similar enhancer dynamic upon exit from the naive state, defined by common sets of transcription factors, including methyl-sensitive ones, that fail to be decommissioned in the absence of DNA methylation. We propose that DNA methylation controls the temporality of a coordinated neural-germline axis of the preferred differentiation route during early development.


Subject(s)
DNA Methylation , Embryonic Stem Cells , Animals , Mice , Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Mouse Embryonic Stem Cells , Germ Cells/metabolism , Germ Layers/metabolism , Mammals/metabolism
13.
Nature ; 626(7998): 357-366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052228

ABSTRACT

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Subject(s)
Embryonic Development , Germ Layers , Pluripotent Stem Cells , Humans , Cell Differentiation , Embryo Implantation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Pluripotent Stem Cells/cytology , Interleukin-6/metabolism , Gastrula/cytology , Gastrula/embryology , Amnion/cytology , Amnion/embryology , Amnion/metabolism , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
14.
Stem Cell Res ; 74: 103270, 2024 02.
Article in English | MEDLINE | ID: mdl-38100911

ABSTRACT

The appropriate control of induced pluripotent stem cells (iPSCs) is essential for studying iPSCs derived from patients with Parkinson's disease (PD). Here, we established an iPSC line from a healthy female donor. The iPSCs were pluripotent, could differentiate into three germ layers, and had normal karyotypes. We also confirmed that the iPSC line exhibited no PD-related gene abnormalities. This iPSC line will be useful for PD research.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Female , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Cell Line , Germ Layers/metabolism
15.
Sci Rep ; 13(1): 22483, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110549

ABSTRACT

The Cre-LoxP system has been commonly used for cell-specific genetic manipulation. However, many Cre strains exhibit excision activity in unexpected cell types or tissues. Therefore, it is important to identify the cell types in which recombination takes place. Fibroblasts are a cell type that is inadequately defined due to a lack of specific markers to detect the entire cell lineage. Here, we investigated the Cre recombination induced by Col1α2-iCre, one of the most common fibroblast-mesenchymal Cre driver lines, by using a double-fluorescent Cre reporter line in which GFP is expressed when recombination occurs. Our results indicated that Col1α2-iCre activity was more extensive across cell types than previously reported: Col1α2-iCre-mediated recombination was found in not only cells of mesenchymal origin but also those of other lineages, including haematopoietic cells, myocardial cells, lung and intestinal epithelial cells, and neural cells. In addition, study of embryos revealed that recombination by Col1α2-iCre was observed in the early developmental stage before gastrulation in epiblasts, which would account for the recombination across various cell types in adult mice. These results offer more insights into the activity of Col1α2-iCre and suggest that experimental results obtained using Col1α2-iCre should be carefully interpreted.


Subject(s)
Germ Layers , Integrases , Mice , Animals , Mice, Transgenic , Integrases/genetics , Integrases/metabolism , Germ Layers/metabolism , Cell Lineage/genetics , Recombination, Genetic
16.
Stem Cell Res ; 72: 103216, 2023 10.
Article in English | MEDLINE | ID: mdl-37783001

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological disorder and the most common form of dementia worldwide. Sporadic Alzheimer's disease (sAD) cases are the main forms, over 95% of AD cases, but still poorly understood. Thereby there is a crucial need to develop in vitro models for studying this multifactorial disorder. Here, we report the reprogramming of skin fibroblasts from a 57-years-old male donor. The new generated iPSC cell line has a normal karyotype and, is pluripotent since it demonstrates the ability to differentiate in vitro into the three germ layers. This iPSC line will be used to understand pathological mechanisms of sAD.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , Male , Middle Aged , Induced Pluripotent Stem Cells/metabolism , Alzheimer Disease/pathology , Cell Line , Fibroblasts/metabolism , Germ Layers/metabolism , Cell Differentiation
17.
Proc Natl Acad Sci U S A ; 120(44): e2311946120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871215

ABSTRACT

The T-box transcription factor Eomesodermin (Eomes), also known as Tbr2, plays essential roles in the early mouse embryo. Loss-of-function mutant embryos arrest at implantation due to Eomes requirements in the trophectoderm cell lineage. Slightly later, expression in the visceral endoderm promotes anterior visceral endoderm formation and anterior-posterior axis specification. Early induction in the epiblast beginning at day 6 is necessary for nascent mesoderm to undergo epithelial to mesenchymal transition (EMT). Eomes acts in a temporally and spatially restricted manner to sequentially specify the yolk sac haemogenic endothelium, cardiac mesoderm, definitive endoderm, and axial mesoderm progenitors during gastrulation. Little is known about the underlying molecular mechanisms governing Eomes actions during the formation of these distinct progenitor cell populations. Here, we introduced a degron-tag and mCherry reporter sequence into the Eomes locus. Our experiments analyzing homozygously tagged embryonic stem cells and embryos demonstrate that the degron-tagged Eomes protein is fully functional. dTAG (degradation fusion tag) treatment in vitro results in rapid protein degradation and recapitulates the Eomes-null phenotype. However in utero administration of dTAG resulted in variable and lineage-specific degradation, likely reflecting diverse cell type-specific Eomes expression dynamics. Finally, we demonstrate that Eomes protein rapidly recovers following dTAG wash-out in vitro. The ability to temporally manipulate Eomes protein expression in combination with cell marking by the mCherry-reporter offers a powerful tool for dissecting Eomes-dependent functional roles in these diverse cell types in the early embryo.


Subject(s)
Epithelial-Mesenchymal Transition , T-Box Domain Proteins , Mice , Animals , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Germ Layers/metabolism , Embryo, Mammalian/metabolism , Mesoderm/metabolism , Endoderm/metabolism , Gene Expression Regulation, Developmental
18.
BMC Biol ; 21(1): 170, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553620

ABSTRACT

BACKGROUND: Development of vertebrate embryos is characterized by early formation of the anterior tissues followed by the sequential extension of the axis at their posterior end to build the trunk and tail structures, first by the activity of the primitive streak and then of the tail bud. Embryological, molecular and genetic data indicate that head and trunk development are significantly different, suggesting that the transition into the trunk formation stage involves major changes in regulatory gene networks. RESULTS: We explored those regulatory changes by generating differential interaction networks and chromatin accessibility profiles from the posterior epiblast region of mouse embryos at embryonic day (E)7.5 and E8.5. We observed changes in various cell processes, including several signaling pathways, ubiquitination machinery, ion dynamics and metabolic processes involving lipids that could contribute to the functional switch in the progenitor region of the embryo. We further explored the functional impact of changes observed in Wnt signaling associated processes, revealing a switch in the functional relevance of Wnt molecule palmitoleoylation, essential during gastrulation but becoming differentially required for the control of axial extension and progenitor differentiation processes during trunk formation. We also found substantial changes in chromatin accessibility at the two developmental stages, mostly mapping to intergenic regions and presenting differential footprinting profiles to several key transcription factors, indicating a significant switch in the regulatory elements controlling head or trunk development. Those chromatin changes are largely independent of retinoic acid, despite the key role of this factor in the transition to trunk development. We also tested the functional relevance of potential enhancers identified in the accessibility assays that reproduced the expression profiles of genes involved in the transition. Deletion of these regions by genome editing had limited effect on the expression of those genes, suggesting the existence of redundant enhancers that guarantee robust expression patterns. CONCLUSIONS: This work provides a global view of the regulatory changes controlling the switch into the axial extension phase of vertebrate embryonic development. It also revealed mechanisms by which the cellular context influences the activity of regulatory factors, channeling them to implement one of several possible biological outputs.


Subject(s)
Head , Torso , Transcriptome , Torso/embryology , Head/embryology , Animals , Mice , Gene Expression Regulation, Developmental , Protein Interaction Maps , Wnt Signaling Pathway , Chromatin/genetics , Chromatin/metabolism , Germ Layers/embryology , Germ Layers/metabolism , Transcription Factors/metabolism
19.
Nat Commun ; 14(1): 4022, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419903

ABSTRACT

Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of ß-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.


Subject(s)
Embryonic Development , Germ Layers , Animals , Mice , Humans , gamma Catenin/genetics , gamma Catenin/metabolism , Cell Differentiation/genetics , Germ Layers/metabolism , Embryonic Development/genetics , Gene Expression Profiling , Blastocyst/metabolism , Mammals/genetics
20.
PLoS One ; 18(7): e0279515, 2023.
Article in English | MEDLINE | ID: mdl-37471320

ABSTRACT

Specification of the epiblast (EPI) and primitive endoderm (PE) in the mouse embryo involves fibroblast growth factor (FGF) signaling through the RAS/MAP kinase pathway. FGFR1 and FGFR2 are thought to mediate this signaling in the inner cell mass (ICM) of the mouse blastocyst and BMP signaling can also influence PE specification. In this study, we further explored the dynamics of FGFR2 expression through an enhanced green fluorescent protein (eGFP) reporter mouse line (FGFR2-eGFP). We observed that FGFR2-eGFP is present in the late 8-cell stage; however, it is absent or reduced in the ICM of early blastocysts. We then statistically correlated eGFP expression with PE and EPI markers GATA6 and NANOG, respectively. We detected that eGFP is weakly correlated with GATA6 in early blastocysts, but this correlation quickly increases as the blastocyst develops. The correlation between eGFP and NANOG decreases throughout blastocyst development. Treatment with FGF from the morula stage onwards did not affect FGFR2-eGFP presence in the ICM of early blastocysts; however, late blastocysts presented FGFR2-eGFP in all cells of the ICM. BMP treatment positively influenced FGFR2-eGFP expression and reduced the number of NANOG-positive cells in late blastocysts. In conclusion, FGFR2 is not strongly associated with PE precursors in the early blastocyst, but it is highly correlated with PE cells as blastocyst development progresses, consistent with the proposed role for FGFR2 in maintenance rather than initiating the PE lineage.


Subject(s)
Endoderm , Germ Layers , Animals , Mice , Blastocyst/metabolism , Cell Differentiation , Cell Lineage , Embryo, Mammalian/metabolism , Endoderm/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Germ Layers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...